Increased synchronization of cortical oscillatory activities between human supplementary motor and primary sensorimotor areas during voluntary movements.

نویسندگان

  • S Ohara
  • T Mima
  • K Baba
  • A Ikeda
  • T Kunieda
  • R Matsumoto
  • J Yamamoto
  • M Matsuhashi
  • T Nagamine
  • K Hirasawa
  • T Hori
  • T Mihara
  • N Hashimoto
  • S Salenius
  • H Shibasaki
چکیده

In human, both primary and nonprimary motor areas are involved in the control of voluntary movements. However, the dynamics of functional coupling among different motor areas has not been fully clarified yet. Because it has been proposed that the functional coupling among cortical areas might be achieved by the synchronization of oscillatory activity, we investigated the electrocorticographic coherence between the supplementary motor and primary sensorimotor areas (SMA and S1-M1) by means of event-related partial coherence analysis in 11 intractable epilepsy patients. We found premovement increase of coherence between the SMA proper and S1-M1 at the frequency of 0-33 Hz and between the pre-SMA and S1-M1 at 0-18 Hz. Coherence between the SMA proper and M1 started to increase 0.9 sec before the movement onset and peaked 0.3 sec after the movement. There was no systematic difference within the SMA (SMA proper vs pre-SMA) or within the S1-M1, in terms of the time course as well as the peak value of coherence. The phase spectra revealed near-zero phase difference in 57% (20 of 35) of region pairs analyzed, and the remaining pairs showed inconsistent results. This increase of synchronization between multiple motor areas in the preparation and execution of voluntary movements may reflect the multiregional functional interactions in human motor behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements.

We studied the activation and interaction of cortical motor regions during simple, internally paced and externally paced right-hand finger extensions in healthy volunteers. We recorded EEGs from 28 scalp electrodes and analysed task-related coherence, task-related power and movement-related cortical potentials. Task-related coherence reflects inter-regional functional coupling of oscillatory ne...

متن کامل

Cortical activities associated with voluntary movements and involuntary movements.

Recent advance in non-invasive techniques including electrophysiology and functional neuroimaging has enabled investigation of control mechanism of voluntary movements and pathophysiology of involuntary movements in human. Epicortical recording with subdural electrodes in epilepsy patients complemented the findings obtained by the non-invasive techniques. Before self-initiated simple movement, ...

متن کامل

Boosting Cortical Activity at Beta-Band Frequencies Slows Movement in Humans

Neurons have a striking tendency to engage in oscillatory activities. One important type of oscillatory activity prevalent in the motor system occurs in the beta frequency band, at about 20 Hz. It is manifest during the maintenance of tonic contractions and is suppressed prior to and during voluntary movement. This and other correlative evidence suggests that beta activity might promote tonic c...

متن کامل

Grasping Hand Verbs: Oscillatory Beta and Alpha Correlates of Action-Word Processing

The grounded cognition framework proposes that sensorimotor brain areas, which are typically involved in perception and action, also play a role in linguistic processing. We assessed oscillatory modulation during visual presentation of single verbs and localized cortical motor regions by means of isometric contraction of hand and foot muscles. Analogously to oscillatory activation patterns acco...

متن کامل

Dynamic synchronization between multiple cortical motor areas and muscle activity in phasic voluntary movements.

To study the functional role of synchronized neuronal activity in the human motor system, we simultaneously recorded cortical activity by high-resolution electroencephalography (EEG) and electromyographic (EMG) activity of the activated muscle during a phasic voluntary movement in seven healthy subjects. Here, we present evidence for dynamic beta-range (16-28 Hz) synchronization between cortica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 23  شماره 

صفحات  -

تاریخ انتشار 2001